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1. Introduction

Over the past years, spontaneous breaking of the Lorentz invariance and questions related

to this issue, such as superluminal propagation of perturbations in nontrivial backgrounds,

attracted a renewed interest among physicists. One of the basic questions here is whether

the theories allowing the superluminal velocities possess internal inconsistencies and, in par-

ticular, inevitably lead to the causality violation namely to the appearance of the closed

causal curves (CCCs). Concerning this issue there exist two contradicting each other points

of view. Some authors (see, for instance, [1 – 8]) argue that the subluminal propagation

condition should a priori be imposed to make the theory physically acceptable. For ex-

ample, in [1] on the P. 60 the authors introduce the “Postulate of Local Causality” which
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excludes the superluminal velocities from the very beginning. The requirement of sublumi-

nality is sometimes used to impose rather strong restrictions on the form of the admissible

Lagrangians for the vector and higher spin fields [5] and gravity modifications [7]. The

effective field theories (EFT) allowing the superluminal propagation were considered in [8],

where it was argued that in such theories global causality and analyticity of the S-matrix

may be easily violated. The main conclusion of [8] is not favorable for the theories with

superluminal propagation. In particular the authors claim that the UV-completion of such

theories must be very nontrivial if it exists at all (for a different attitude see [9, 10]).

An open minded opinion concerning the superluminal propagation is expressed in [11],

where one argues that the proper change of the chronological ordering of spacetime in non-

linear field theory with superluminal propagation allows us to avoid the causal paradoxes.

Recently, in the literature were discussed several cases in which faster-than-light propa-

gation arises in a rather natural way. In particular we would like to mention the noncommu-

tative solitons [12], Einstein aether waves [13], “superluminal” photons in the Drummond-

Hathrell effect [14, 15] and in the Scharnhorst effect [16, 17].1 These last two phenomena

are due to the vacuum polarization i.e. higher-order QED corrections. It was argued that

this superluminal propagation leads to the causal paradoxes in the gedanken experiment

involving either two black holes [18] or two pairs of Casimir plates [19] moving with the

high relative velocities. To avoid the appearance of the closed causal curved in such exper-

iments the authors of [19] invoked the Chronology Protection Conjecture [20] and showed

that the photons in the Scharnhorst effect causally propagate in effective metric different

from the Minkowski one.

Note that the superluminal propagation cannot be the sole reason for the appearance of

the closed causal curves. There are numerous examples of spacetimes in General Relativity,

where the “Postulate of Local Causality” is satisfied and, nevertheless, the closed causal

curves are present (see [21 – 25]). Therefore an interesting question arises whether the

superluminal propagation leads to additional problems related with causality compared to

the situation in General Relativity.

In this paper we will consider the k-essence fields [26 – 29] and show that contrary to the

claim of [2, 30] the causality is not violated in generic k-essence models with superluminal

propagation (similar attitude was advocated in [31 – 33]). In this sense, in spite of the

presence of superluminal signals on nontrivial backgrounds, the k-essence theories are not

less safe and legitimate than General Relativity.

The paper is organized as follows. In section 2 we discuss the equation of motion for

k-essence and derive generally covariant action for perturbations for an arbitrary k-essence

background.

General aspects of causality and propagation of perturbations on a nontrivial back-

ground, determining the “new aether” , are discussed in section 3. In particular, we prove

1In this paper under “superluminal” we always mean “faster than light in usual QED vacuum in un-

bounded empty space”. To avoid confusion one could say that photons propagate faster than gravitons in

the Scharnhorst effect. When this paper was in the final stage of preparation the superluminal wave-front

velocity in these effects was putted under question [10].
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that no causal paradoxes arise in the cases studied in our previous works [27, 28, 26]

and [29].

Section 4 is devoted to the Cauchy problem for k-essence equation of motion. We

investigate under which restrictions on the initial conditions the Cauchy problem is well

posed.

In section 5 we study the Cauchy problem for small perturbations in the “ new aether”

rest frame and in the fast moving spacecraft.

Section 6 is devoted to the Chronology Protection Conjecture, which is used to avoid

the CCCs in gedanken experiments considered in [8].

In section 7 we discuss the universal role of the gravitational metric. Namely, we show

that for the physically justified k-essence theories the boundary of the smooth field config-

uration localized in Minkowski vacuum, can propagate only with the speed not exceeding

the speed of light. In agreement with this result we derive that exact solitary waves in

purely kinetic k-essence propagate in vacuum with the speed of light.

Our main conclusions are summarized in section 8.

All derivations of more technical nature the reader can find in appendices. In ap-

pendix A we derive characteristics of the equation of motion and discuss local causality.

Appendices B and C are devoted to the derivation of the generally covariant action for

perturbations. In appendix D we show how the action derived in appendix B is related

to the action for cosmological perturbations from [28, 34]. In appendix E we consider the

connection between k-essence and hydrodynamics. The derivation of Green functions is

given in appendix F.

2. Equations of motion and emergent geometry

Let us consider the k-essence scalar field φ with the action:

Sφ =

∫

d4x
√−gL (X,φ) , (2.1)

where

X =
1

2
gµν∇µφ∇νφ,

is the canonical kinetic term and by ∇µ we always denote the covariant derivative associated

with metric gµν . We would like to stress that this action is explicitly generally covariant and

Lorentz invariant. The variation of action (2.1) with respect to gµν gives us the following

energy-momentum tensor for the scalar field:

Tµν ≡ 2√−g

δSφ

δgµν
= L,X∇µφ∇νφ − gµνL, (2.2)

where (. . .),X is the partial derivative with respect to X. The Null Energy Condition

(NEC) Tµνnµnν ≥ 0 (where nµ is a null vector: gµνnµnν = 0) is satisfied provided L,X ≥ 0.

Because violation of this condition would imply the unbounded from below Hamiltonian

and hence signifies the inherent instability of the system [35] we consider only the theories

with L,X ≥ 0.
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The equation of motion for the scalar field is obtained by variation of action (2.1) with

respect to φ,

− 1√−g

δSφ

δφ
= G̃µν∇µ∇νφ + 2XL,Xφ − L,φ = 0, (2.3)

where the “ effective” metric is given by

G̃µν (φ,∇φ) ≡ L,Xgµν + L,XX∇µφ∇νφ. (2.4)

This second order differential equation is hyperbolic (that is, G̃µν has the Lorentzian sig-

nature) and hence describes the time evolution of the system provided [6, 36, 33]

1 + 2X
L,XX

L,X
> 0. (2.5)

When this condition holds everywhere the effective metric G̃µν determines the characteris-

tics (cone of influence) for k-essence, see e.g. [36, 33, 37, 38]. For nontrivial configurations

of k-essence field ∂µφ 6= 0 and the metric G̃µν is generally not conformally equivalent to

gµν ; hence in this case the characteristics do not coincide with those ones for canonical

scalar field the Lagrangian of which depends linearly on the kinetic term X. In turn, the

characteristics determine the local causal structure of the space time in every point of the

manifold. Hence, the local causal structure for the k-essence field is generically different

from those one defined by metric gµν (see appendix A for details). For the coupled system

of equations for the gravitational field and k-essence the Cauchy problem is well posed

only if the initial conditions are posed on the hypersurface which is spacelike with respect

to both metrics: gµν and G̃µν (see P. 251 of ref. [39] and refs. [40, 36, 41] for details).

We postpone the detailed discussion of this issue until section 4 and now we turn to the

behavior of small perturbations on a given background. With this purpose it is convenient

to introduce the function

c2
s ≡

(

1 + 2X
L,XX

L,X

)−1

, (2.6)

which for the case X > 0 plays the role of “ speed of sound” for small perturbations [28]

propagating in the preferred reference frame, where the background is at rest. It is well

known that in the case under consideration there exists an equivalent hydrodynamic de-

scription of the system (see appendix E) and the hyperbolicity condition (2.5) is equivalent

to the requirement of the hydrodynamic stability c2
s > 0.

The Leray’s theorem (see P. 251 of ref. [39] and ref. [40] ) states that the perturbations

π on given background φ0 (x) propagate causally in metric G̃µν (φ0,∇φ0). In appendix B

we show that neglecting the metric perturbations δgµν , induced by π, one can rewrite the

equation of motion for the scalar field perturbations in the following form

1√
−G

∂µ

(√
−GGµν∂νπ

)

+ M2
effπ = 0, (2.7)

here we denote

Gµν ≡ cs

L2
,X

G̃µν ,
√
−G ≡

√

−detG−1
µν where G−1

µλGλν = δν
µ, (2.8)
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and

M2
eff ≡ cs

L2
,X

(

2XL,Xφφ −L,φφ +
∂G̃µν

∂φ
∇µ∇νφ0

)

. (2.9)

Note that the metric Gµν is conformally equivalent to G̃µν and hence describes the same

causal structure as it must be. The equation for the perturbations has exactly the same

form as equation for the massive Klein-Gordon field in the curved spacetime. Therefore the

metric Gµν describes the “ emergent” or “ analogue” spacetime where the perturbations

live. In particular this means that the action for perturbations

Sπ =
1

2

∫

d4x
√
−G

[

Gµν∂µπ∂νπ − M2
effπ2

]

, (2.10)

and the equation of motion (2.7) are generally covariant in the geometry Gµν . Introducing

the covariant derivatives Dµ associated with metric Gµν (DµGαβ = 0), equation (2.7)

becomes

GµνDµDνπ + M2
effπ = 0. (2.11)

Using the inverse to Gµν matrix

G−1
µν =

L,X

cs

[

gµν − c2
s

(L,XX

L,X

)

∇µφ0∇νφ0

]

, (2.12)

one can define the “ emergent” interval

dS2 ≡ G−1
µν dxµdxν , (2.13)

which determines the influence cone for small perturbations of k-essence on a given back-

ground.2 This influence cone is larger than those one determined by the metric gµν ,

provided L,XX/L,X < 0 [6, 36, 33, 38], and the superluminal propagation of small per-

turbations becomes possible (see appendix A). At first glance it looks like the theory

under consideration has emergent bimetric structure. However, this theory is inherently

different from the bimetric theories of gravity [42] because the emergent metric refers only

to the perturbations of k-essence and is due to the non-linearity of the theory, while in

the bimetric gravity theories both metrics have fundamental origin and are on the same

footing.

The derived above form of the action and of the equation of motion for perturbations

is very useful. In particular, it simplifies the stability analysis of the background with re-

spect to the perturbations of arbitrary wavelengths, while the hyperbolicity condition (2.5)

guarantees this stability only with respect to the short-wavelength perturbations.

It is important to mention that besides of the usual hyperbolicity condition (2.5) one

has to require that L,X is nowhere vanishes or becomes infinite. The points where L,X

vanishes or diverges, generally correspond to the singularities of the emergent geometry. It

follows from equations (2.8) and (2.12) that these singularities are of the true nature and

2Note that in order to avoid confusion we will be raising and lowering the indices of tensors by gravita-

tional metric gµν (gµν) throughout the paper.
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cannot be avoided by the change of the coordinate system. Therefore one can argue that

before the singularities are formed the curvature of the emergent spacetime becomes large

enough for efficient quantum production of the k-essence perturbations which will destroy

the classical background and therefore L,X cannot dynamically change its sign. Hence, if

one assumes that at some moment of time the k-essence satisfies the null energy condition,

that is, L,X > 0 everywhere in the space (or ε + p > 0 in hydrodynamical language;

see appendix E) then this condition can be violated only if one finds the way to pass

through the singularity in the emergent geometry with taking into account the quantum

production of the perturbations. This doubts the possibility of the smooth crossing of

the equation of state w = −1 and puts under question recently suggested models of the

bouncing universe [43].3 The statements above generalize the results obtained in [44] and

re-derived later in different ways in [45] in cosmological context.

In deriving (2.10) and (2.11) we have assumed that the k-essence is sub-dominant

component in producing the gravitational field and consequently have neglected the metric

perturbations induced by the scalar field. In particular the formalism developed is appli-

cable for accretion of a test scalar field onto black hole [29]. For k-essence dark energy [26]

action (2.10) can be used only when k-essence is a small fraction of the total energy density

of the universe, in particular, this action is applicable during the stage when the speed of

sound of a successful k-essence has to be larger than the speed of light [2, 32]. During

k-inflation [46, 47, 27] or DBI inflation [48] the geometry gµν is determined by the scalar

field itself and therefore the induced scalar metric perturbations are of the same order of

magnitude as the perturbations of the scalar field. For this case the action for cosmological

perturbations was derived in [28], see also [34]. We have shown in appendix D that the cor-

rect action for perturbations in k-inflation has, however, the same structure of the kinetic

terms as (2.10) or, in other words, the perturbations live in the same emergent spacetime

with geometry Gµν . One can expect therefore that this emergent geometry Gµν has a much

broader range of applicability and determines the causal structure for perturbations also in

the case of other backgrounds, where one cannot neglect the induced metric perturbations.

If the hyperbolicity condition (2.5) is satisfied, then at any given point of spacetime the

metric G−1
µν can always be brought to the canonical Minkowski form diag (1,−1,−1,−1)

by the appropriate coordinate transformation. However, the quadratic forms gµν and G−1
µν

are not positively defined and therefore for a general background there exist no coordi-

nate system where they are both simultaneously diagonal. In some cases both metrics

can be nevertheless simultaneously diagonalized at a given point, so that, e.g. gravita-

tional metric gµν is equal Minkowski metric and the induced metric G−1
µν is proportional

to diag
(

c2
s,−1,−1,−1

)

, where cs is the speed of sound (2.6). For instance, in isotropic

homogeneous universe both metrics are always diagonal in the Friedmann coordinate frame.

We conclude this section with the following interesting observation. The effective

metric (2.12) can be expressed through the energy momentum tensor (2.2) as

G−1
µν = αgµν + βTµν (2.14)

3Note that this issue requires further detailed investigation, because of the higher derivatives used to

stabilize these models. This investigation lies beyond of the scope of this paper.
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where

α =
L,X

cs
− Lcs

L,XX

L,X
and β = −cs

L,XX

L,X
.

As we have pointed out the cosmological perturbations propagate in G−1
µν even if the back-

ground field determines the dynamics of the universe. In this case the energy momentum

tensor for the scalar filed satisfies the Einstein equations and eventually we can rewrite the

effective metric in the following form

G−1
µν =

(

α − β

2
R

)

gµν + βRµν . (2.15)

This looks very similar to the “ metric redefinition” gµν ↔ G−1
µν in string theory where

the quadratic in curvature terms in the effective action are fixed only up to “ metric

redefinition” (2.15) see e.g. [49]. The “ metric redefinition” does not change the light cone

and hence the local causality only in the Ricci flat Rµν = 0 spacetimes. However, neither in

the matter dominated universe nor during inflation the local causal structures determined

by gµν and G−1
µν are equivalent.

3. Causality on nontrivial backgrounds

In this section we discuss the causality issue for superluminal propagation of perturbations

on some nontrivial backgrounds, in particular, in Minkowski spacetime with the scalar

field, in Friedmann universe and for black hole surrounded by the accreting scalar field.

First, we would like to recall a well-known paradox sometimes called “ tachyonic anti-

telephone” [50] arising in the presence of the superluminal hypothetical particles tachyons

possessing unbounded velocity ctachyon > 1. In this case we could send a message to our

own past. Indeed, let us consider some observer, who is at rest at x = 0 with respect

to the reference frame (x, t) and sends along OR a tachyon signal to an astronaut in the

spacecraft R (see figure 1). In turn, after receiving this signal, the astronaut communicates

back sending the tachyon signal, RP . As this signal propagates the astronaut proper time

t′ grows. However, if the speed of the spacecraft is larger than 1/ctachyon, then the signal

RP propagates backward in time in the original rest frame of the observer. Thus, the

observers can in principle send information from “ their future” to “ their past” . It is

clear that such situation is unacceptable from the physical point of view.

Now let us turn to the case of the Minkowski space-time filled with the scalar field,

which allows the “ superluminal” propagation of perturbations in its background. For

simplicity we consider a homogeneous time dependent field φ0 (t). Its “ velocity” ∂µφ is

directed along the timelike vector, uµ = (1, 0, 0, 0). Why does the paradox above not

arise here? This is because the superluminal propagation of the signals is possible only in

the presence of nontrivial background of scalar field which serves as the aether for sonic

perturbations. The aether selects the preferred reference frame and clearly the equation of

motion for acoustic perturbations is not invariant under the Lorentz transformations unless

cs = 1. In the moving frame of the astronaut the equation for perturbations has more

complicated form than in the rest frame and the analysis of its solutions is more involved.
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R
future

past

O

P
response

signal

t

x

t′

x′

Figure 1: This figure represents the causal paradox constructed using tachyons. Someone living

along the worldline x = 0 sends a tachyon signal to the astronaut in a fast moving spacecraft, OR.

In the spacecraft frame (x′, t′), the astronaut sends a tachyon signal back, RP . The signal RP

propagates in the direction of growing t′ as it is seen by the astronaut, however it travels “back in

time” in the rest frame. Thus it is possible to send a message back in the own past.

However, keeping in mind that k-essence signals propagate along the characteristics which

are coordinate independent hypersurfaces in the spacetime we can study the propagation

of sonic perturbations, caused by the astronaut, in the rest frame of the aether and easily

find that the signal propagates always forward in time in this frame (see figure 2). Hence

no closed causal curves can arise here.

We would like to make a remark concerning the notion of “ future-” and “ past” di-

rected signals. It was argued in [30] that in order to have no CCCs for the k-essence during

the “ superluminal” stage, “ . . . the observers traveling at high speeds with respect to the

cosmological frame must send signals backwards in their time for some specific direction”

. One should remember, however, that the notion of past and future is determined by

the past and future cones in the spacetime and has nothing to do with a particular choice

of coordinates. Thus, the signals, which are future-directed in the rest-frame remain the

future-directed also in a fast-moving spacecraft, in spite of the fact that this would corre-

spond to the decreasing time coordinate t′. As we show in section 5, the confusion arises

because of a poor choice of coordinates, when decreasing t′ correspond to future-directed

signals and vice versa. The example shown in figure 4 illustrates this point: one can see

– 8 –
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pastlight

R

light future

k−essence future

k−essence past

O

t

x

t′

x′

Figure 2: The causality paradox is avoided when superluminal signals propagate in the background

which breaks the Lorentz symmetry (compare with figure 1). The observers cannot send a message

to themselves in the past.

that even without involving superluminal signals, an increasing coordinate time does not

always imply the future direction.

Another potentially confusing issue is related to the question which particular velocity

must be associated with the speed of signal propagation, namely, phase, group or front

velocity. For example, in [30] an acausal paradox is designed using different superluminal

group velocities for different wavenumbers. One should remember, however, that neither

group nor phase velocities have any direct relation with the causal structure of the space-

time. Indeed the characteristic surfaces of the partial differential equations describe the

propagation of the wavefront. This front velocity coincides with the phase velocity only

in the limit of the short wavelength perturbations. Generally the wavefront corresponds

to the discontinuity of the second derivatives and therefore it moves “ off-shell” (a more

detailed discussion can be found in e.g. [9]). The group velocity can be less or even larger

than the wavefront velocity. One can recall the simple examples of the canonical free scalar

field theories: for normal scalar fields the mass squared, m2 > 0, is positive and the phase

velocity is larger than c while the group velocity is smaller than c; on the other hand for

tachyons (m2 < 0) the situation is opposite. Thus, if the group velocity were the speed

of the signal transfer, one could easily build the time-machine similar to those described

in [30] using canonical scalar field with negative mass squared, m2 < 0. This, however, is

– 9 –
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impossible because the causal structure in both cases (m2 > 0 and m2 < 0) is governed

by the same light cones. Finally we would like to mention that the faster-than-light group

velocity has been already measured in the experiment [51].

To prove the absence of the closed causal curves (CCC) in those known situations where

the superluminal propagation is possible, we use the theorem from ref. [39] (see p. 198):

A spacetime (M, gµν) is stably causal if and only if there exists a differentiable function f

on M such that ∇µf is a future directed timelike vector field. Here M is a manifold and

gµν is a metric with Lorentzian signature defined on this manifold. In this theorem the

vector field ∇µf is defined as ∇µf ≡ gµν∇νf , where gµν is the inverse tensor to the metric

(gαλgλβ = δα
β ) and ∇ is a derivative operator. Note, that the notion of stable causality

implies that the spacetime (M, gµν) possesses no CCCs and thus no causal paradoxes can

arise in this case. The theorem above has a kinematic origin and does not rely on dynamical

equations. In the case of k-essence the effective acoustic metric G−1
µν plays the role of gµν

for small perturbations. Thus, by virtue of the theorem above, closed causal curves are

absent in the emergent spacetime
(

M, G−1
µν

)

provided there exists a global time.

Let us start with the Minkowski spacetime with an arbitrary inhomogeneous back-

ground φ0 (x) and verify under which conditions one can find a global time t for both ge-

ometries gµν and G−1
µν and thus guarantee the absence of CCCs. Let us take the Minkowski

t, ηµν∂µt∂νt = 1, and check whether this time can also be used as a global time for

emergent spacetime G−1
µν . First we calculate the vector field considered in the theorem:

∇µt = Gµν∇νt, then we have G−1
µν ∇µt∇νt = Gµν∂µt∂νt. Further by using equations (2.4)

and (2.8) we obtain

Gµν∂µt∂νt =
cs

L,X

[

1 +

(L,XX

L,X

)

(∂µt∇µφ0)
2

]

=
cs

L,X

[

1 +

(L,XX

L,X

)

φ̇2
0

]

. (3.1)

Assuming that cs > 0, L,X > 0 we arrive to the conclusion that t is a global time for

emergent spacetime provided

1 +

(L,XX

L,X

)

(

φ̇0 (xµ)
)2

> 0, (3.2)

holds everywhere on the manifold M. This inequality is obviously always satisfied in

the subluminal case. It is convenient to rewrite this inequality in an equivalent form.

First we take t as time coordinate and introduce the spatial coordinates xi such that

the Minkowski metric takes the canonical form diag(1,−1,−1,−1). In this case we can

express
(

φ̇0 (xµ)
)2

= 2X +
(

~∇φ0 (xµ)
)2

and using the definition (2.6) and hyperbolicity

condition (2.5) we bring (3.2) to the form

1 + c2
s

(L,XX

L,X

)

(

~∇φ0 (xµ)
)2

> 0. (3.3)

From this inequality it is obvious that, if the spatial derivatives are sufficiently small then

this condition can also be satisfied even if cs > 1. Thus, if in the Minkowski spacetime

there exits a Lorentz frame in which k-essence is sufficiently homogeneous everywhere, then

there are no causal paradoxes. In particular this result applies to the case of the completely
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homogeneous background φ0 (t). Note that the breaking of the above condition for some

background field configuration φ0 (x) does not automatically mean the appearance of the

CCCs. This just tells us that the time coordinate t cannot be used as the global time

coordinate. However, it does not exclude the possibility that there exists another function

serving as the global time. Only, if one can prove that such global time for both metrics

does not exist at all, then there arise causal paradoxes.

In the case of the Friedmann universe

ds2 = gµνdxµdxν = dt2 − a2(t)dx2, (3.4)

dominated by the k-essence one can choose the cosmological time t as the global time

function. Indeed, similarly to the previous case (see equation (3.1)) we obtain that

Gµν∂µt∂νt =
1

csL,X
> 0, (3.5)

for cs > 0, L,X > 0, and we conclude that CCCs do not exist in this case. In particular,

the k-essence models of dark energy, where the superluminal propagation is the generic

property of the fluctuations during some stage of expansion of the universe [2, 32], do not

lead to causal paradoxes contrary to the claim by [2, 30].

If inhomogeneous k-essence is sub-dominant during a stage of the cosmological evo-

lution, then cosmological time is global time provided (3.2) (or equivalently (3.3) with

substitution ~∇ → ~∇/a(t)) holds. Thus sufficiently homogeneous k-essence does not allow

any causal paradoxes.

The absence of the closed causal curves in the Friedmann universe with k-essence can

also be seen by calculating the “ effective” line element (2.13) corresponding to the effective

acoustic metric:

dS2 = G−1
µν dxµdxν =

L,X

cs

(

c2
sdt2 − a2(t)dx2

)

. (3.6)

The theory under consideration is generally covariant. After making redefinitions,
√

L,Xcsdt → dt, and, a2(t)L,X/cs → a2(t), the line element (3.6) reduces to the inter-

val for the Friedmann universe (3.4), where obviously no causality violation can occur.

Thus we conclude that both the k-essence [26] and the “ superluminal” inflation with large

gravity waves [27] are completely safe and legitimate on the side of causality.

When X = 1
2gµν∂µφ0∂νφ0 is positive everywhere in the spacetime the background field

itself can be used as the global time function. Indeed for general gravitational background

gµν and cs > 0, L,X > 0 we have

gµν∂µφ0∂νφ0 > 0 and Gµν∂µφ0∂νφ0 =
2X

L,Xcs
> 0,

and due to the fact that X > 0 the sign in front ∇µφ0 can be chosen so that the vector

∇µφ0 is always future directed on M. Therefore φ0 (x) or (−φ0 (x) if necessary) can serve

as a global time in both spacetimes (M, gµν) and
(

M, G−1
µν

)

, and no causal paradoxes

arise.
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In particular this is applicable for the accretion of the “ superluminal” scalar field

onto the Schwarzschild black hole [29]. In this case sound horizon is located inside the

Schwarzschild radius and therefore the Schwarzschild time coordinate cannot be used as a

global time function. However, X > 0 outside the acoustic horizon (see [29]) and in accor-

dance with the theorem and discussion above we can take φ as the global time coordinate

and hence the acoustic spacetime is stably causal.

In all examples above we have considered the “ superluminal” acoustic metric. Thus,

if there exist no CCCs in
(

M, G−1
µν

)

then there are no CCCs with respect to metric gµν

because acoustic cone is larger than the light cone. It may happen that in some cases it is

not enough to prove that there no CCCs separately in
(

M, G−1
µν

)

and (M, gµν) and one has

to use the maximal cone or introduce an artificial cone [31] encompassing all cones arising

in the problem. It is interesting to note that, if the k-essence realizes both “ superluminal”

and subluminal speed of sound in the different regions of the manifold, then there exist

hypersurface where the k-essence metric is conformally equivalent to the gµν and one can

smoothly glue the maximal cones together everywhere on M. After that one can consider a

new “ artificial metric” GΣ
µν as determining the complete causal structure of the manifold.

We would like to point out that although the theorem on stable causality allowed

us to prove that there is no causal paradoxes in those cases we considered above, it is

no guaranteed that CCCs cannot arise for some other backgrounds. Indeed, in [8] the

authors have found some configurations of fields possessing CCCs: one for the scalar field

with non-canonical kinetic term and another for the “ wrong” -signed Euler-Heisenberg

system. In both cases the small perturbations propagate superluminally on rather non-

trivial backgrounds. We will pursue this issue further in section 6.

4. Which initial data are allowed for the well posed Cauchy problem?

Using the theorem on stable causality we have proven that the “ superluminal” k-essence

does not lead to any causal paradoxes for cosmological solutions and for accretion onto

black hole. However, the consideration above is of a kinematic nature and it does not deal

with the question how to pose the Cauchy problem for the background field φ0 and it’s

perturbations π.

It was pointed out in [8] that in the reference frame of the spacecraft moving with

respect to nontrivial background, where cs > 1, with the speed v = 1/cs the Cauchy

problem for small perturbations π is ill posed. This happens because the hypersurface

of the constant proper time t′ of the astronaut is a null-like with respect to the acoustic

metric G−1
µν . Hence t′ = const is tangential to the characteristic surface (or sonic cone see

appendix A) and cannot be used to formulate the Cauchy problem for perturbations which

“ live” in this acoustic metric. Intuitively this happens because the perturbations propagate

instantaneously with respect to the hypersurface t′ = const. Moreover, for v > 1/cs, the

sonic cone deeps below the surface t′ = const (see figures 3 and 2) and in the spacetimes

of dimension D > 2 the Cauchy problem is ill posed as well because there always exist

two directions along which the perturbations propagate “ instantaneously” in time t′ (red

vectors in figure 3). This tell us that not every imaginable configuration of the background
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can be realized as the result of evolution of the system with the well formulated Cauchy

problem and hence not every set of initial conditions for the scalar field is allowed.

In this section we will find under which restrictions on the initial configuration of

the scalar field the Cauchy problem for equation (2.3) is well-posed. For this purpose it

is more convenient not to split the scalar field into background and perturbations and

consider instead the total value of the field φ = φ0 + π. The k-essence field interacts with

gravity and therefore for consistency one has to consider the coupled system of equations

for the gravitational metric gµν and the k-essence field φ. In this case the Cauchy problem

is well posed only if the initial data are set up on a hypersurface Σ which is simultaneously

spacelike in both metrics: gµν and G−1
µν (for details see P. 251 of ref. [39] and refs. [40, 36,

41]). We will work in the synchronous coordinate system, where the metric takes the form

ds2 = dt2 − γikdxidxk, (4.1)

and select the spacelike in gµν hypersurface Σ to be a constant time hypersurface t = t0.

The 1-form ∂µt vanishes on any vector Rµ tangential to Σ: Rµ∂µt = 0 (see figure 3).

This 1-form is timelike with respect to the gravitational metric gµν , that is gµν∂µt∂νt > 0.

In case when Lagrangian for k-essence depends at maximum on the first derivatives of

scalar field the initial conditions which completely specify the unambiguous solution of the

equations of motion are the initial field configuration φ(x) and and it’s first time derivative

φ̇(x) ≡ (gµν∂µt∂νφ)Σ. Given these initial conditions one can calculate the metric G−1
µν and

consequently the influence cone at every point on Σ. First we have to require that for a

given set of initial data the hyperbolicity condition (2.5) is not violated. This imposes the

following restriction on the allowed initial values φ(x) and φ̇(x):

c−2
s = 1 +

[

(

φ̇(x)
)2

−
(

~∇φ(x)
)2
] L,XX

L,X
> 0, (4.2)

where we have denoted
(

~∇φ(x)
)2

= γik∂iφ∂kφ. In addition we have to require that the

hypersurface Σ is spacelike also with respect to emergent metric Gµν , that is, for every

vector Rµ, tangential to Σ, we have G−1
µν RµRν < 0. This is equivalent to the requirement

that ∂µt is timelike with respect to Gµν on Σ. Using (2.12) we can write

G−1
µν RµRν = −L,X

cs
R2

[

1 + c2
s

L,XX

L,X
(lµ∇µφ(x))2

]

, (4.3)

where we denote R2 = −gµνRµRν > 0 and lµ = Rµ/R. The maximal value of (lµ∇µφ(x))2

is
(

~∇φ(x)
)2

. Therefore Σ is spacelike hypersurface, if (and only if)

1 + c2
s

(

~∇φ(x)
)2 L,XX

L,X
> 0. (4.4)

Similarly to the calculations in section 3, by using (2.6) the last inequality can be rewritten

as

c2
s

(

1 +
(

φ̇(x)
)2 L,XX

L,X

)

> 0. (4.5)
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∂µt

Σ

Rµ

A

B

Figure 3: The Cauchy problem for the equation of motion of k-essence is set up on the hypersurface

Σ: t = t0. The vector Rµ is tangential to Σ: Rµ∂µt = 0. For the hyperbolic equation of motion,

the Cauchy problem is well posed provided that ∂µt is timelike with respect to Gµν everywhere on

Σ, or, equivalently, the hypersurface Σ is spacelike with respect to Gµν (the cone A in the figure).

The cone B represents an ill-posed Cauchy problem for the hyperbolic equation. In particular the

red propagation vectors are tangent to Σ.

If at some point on Σ the vector Rµ becomes null-like with respect to G−1
µν , that is,

G−1
µν RµRν = 0, the signals propagate instantaneously (red propagation vectors from cone

B on figure 3) and one cannot guarantee the continuous dependence on the initial data

or even the existence and uniqueness of the solution, see e.g. [52]. Therefore, given La-

grangian L (φ,X) and hypersurface Σ one has to restrict the initial data
(

φ(x), φ̇(x)
)

by

inequalities (4.2) and (4.4) (or equivalently (4.5)), to have a well posed Cauchy problem.

The condition (4.5) is always satisfied in the subluminal case for which L,XX/L,X ≥ 0.

In addition, we conclude that, if these conditions are satisfied everywhere on the manifold

M and the selected synchronous frame is nonsingular in M, then time t plays the role of

global time and in accordance with the theorem about stable causality no causal paradoxes

arise in this case.

As a concrete application of the conditions derived let us find which restrictions should

satisfy the admissible initial conditions for the low energy effective field theory with La-

grangian L(X) ≃ X − X2/µ4 + . . ., where µ is a cut off scale ref. [8]. In this case (4.5)

imply that not only X ≪ µ4, but also
(

φ̇(x)
)2

≪ µ4 and
(

~∇φ(x)
)2

≪ µ4. Note that these

restrictions can be rewritten in the Lorentz invariant way: for example the first condition

takes the form (gµν∂µt∂νφ)2 ≪ µ4.

Finally let us note that even well-posed Cauchy problem cannot guarantee the global

existence of the unique solution for nonlinear system of the equations of motion: for ex-

ample, the solution can develop caustics [58] or can become multi-valued [61].

5. How to pose the initial conditions in a fast moving spacecraft?

In this section we resolve “ paradoxes” which at first glance seems arising in the case of
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superluminal propagation of perturbations [8, 30, 2] when one tries to formulate the Cauchy

problem in a fast moving spacecraft. To simplify the consideration we restrict ourselves by

purely kinetic k-essence, for which L (φ,X) = L(X) and assume that for the background

solution X0 = const > 0 and cs > 1. This is a reasonable approximation for more general

backgrounds with X0 > 0 on the scales much smaller than the curvature scale of the

emergent geometry G−1
µν . There is always the preferred reference frame

(

t, xi
)

in which the

background is isotropic and homogeneous. We refer to this frame as the rest frame. In the

presence of an external source δJ equation (2.7) in this frame takes the following form

∂2
t π − c2

s △x π = ξδJ, (5.1)

where ξ ≡
(

c2
s/L,X

)

, for details see appendix B, equations (B.20) and (B.1). Now let us

consider a spacecraft moving in x-direction with velocity v through the k-essence back-

ground and denote the Lorentz boosted comoving spacecraft coordinates by
(

t′, x′i
)

. As

we have already mentioned above, if the velocity of the spacecraft is larger than c2/cs then

the Cauchy problem for π cannot be well posed on the hypersurface t′ = const.4 After

Lorentz transformation to comoving spacecraft frame, equation (5.1) becomes

(

1 − v2

c2

)−1 [(

1 − c2
sv

2

c4

)

∂2
t′π − 2v

(

1 − c2
s

c2

)

∂t′∂x′π +
(

v2 − c2
s

)

∂2
x′π

]

− c2
s∂J∂Jπ = ξδJ,

(5.2)

where prime denotes comoving coordinates and index J = 2, 3, . . . stands for the spatial

directions other than x′ [note that in ref. [8] the factor
(

1 − v2/c2
)−1

in front of squire

brackets is missing]. For v = c2/cs the second time derivative drops out of (5.2) and the

necessary conditions for applicability of the Cauchy-Kowalewski theorem are not satisfied;

hence the existence and uniqueness of the solution (5.2) are not guaranteed. For v >

c2/cs the necessary conditions of the Cauchy-Kowalewski theorem are met and the unique

solution of (5.2) exists; however, this solution contains exponentially growing modes in the

spatial directions, perpendicular to x′. Indeed, substituting

π ∝ exp
(

−iω′t′ + ikx′x′ + ikJxJ
)

,

in (5.2) we find that in the boosted frame:

ω′
± =

(

1 − v2c2
s

c4

)−1
{

kx′v

(

c2
s

c2
− 1

)

± cs

√

(

1 − v2

c2

)[

k2
x′

(

1− v2

c2

)

−
(

v2c2
s

c4
− 1

)

k2
⊥

]

}

.

(5.3)

where we have denoted k⊥ = {kJ} and k2
⊥ = kJkJ . For D = 2, when k⊥ = 0, the

frequencies ω are always real and no instability modes exist (note that v < c). However, if

D > 2 and v > c2/cs then for

k2
⊥ > k2

x′

(

1 − v2/c2

v2c2
s/c

4 − 1

)

, (5.4)

4Throughout this section we explicitly write the speed of light c and without loss of generality we assume

v > 0.
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the general solution of (5.2) contains exponentially growing modes. Note that these are

the high frequency modes and hence the instability would imply catastrophic consequences

for the theory. At first glance, this looks like a paradox, because equation (5.1), which

has no unstable solutions in the rest frame, acquired exponentially unstable solutions in

the boosted frame. On the other hand, any solution of (5.1) after performing the Lorentz

transformation with v > c2/cs does not contain exponentially growing modes with k2
⊥

satisfying (5.4). Indeed, given (kx, k⊥) in the rest frame one can perform the Lorentz

transformation and obtain:

{

ω′, kx′ , k′
⊥

}

=

{

ω + vkx
√

1 − v2/c2
,

kx + ωv/c2

√

1 − v2/c2
, k⊥

}

, (5.5)

were ω = ±cs

√

k2
x + k2

⊥. Expressing ω′ via kx′ and k⊥ we again arrive to (5.3). However, it

follows from (5.5) that if v > c2/cs then the components of the Lorentz boosted wavevector

satisfy the condition

k2
⊥ ≤ k2

x′

(

1 − v2/c2

v2c2
s/c

4 − 1

)

, (5.6)

and hence unstable modes are not present. This raises the question whether the unstable

modes which cannot be generated in the rest frame of k-essence, can nevertheless be exited

by any physical device in the spacecraft. We will show below that such device does not

exist. With this purpose we have to find first the Greens function in both frames.

Let us begin with two-dimensional spacetime. In this case the retarded Green’s func-

tion for (5.1) in the rest frame (rf) is (see e.g. [52]):

Grf
R(t, x) =

1

2cs
θ (cst − |x|) . (5.7)

In the boosted Lorentz frame it becomes

Grf
R(t′, x′) =

1

2cs
θ

(

cs

(

t′ + vx′/c2
)

− |x′ + vt′|
√

1 − v2/c2

)

. (5.8)

For csv < c2, the Fourier transform of (5.8) is the retarded in t′ Green’s function:

Grf
R(t′, k′) =

θ(t′)

2icsk′

(

eiω′

+
t′ − eiω′

−
t′
)

, (5.9)

whereas for csv > c2 it is given by:

Grf
R(t′, k′) = −θ(t′)eiω′

+
t′ + θ(−t′)eiω′

−
t′

2icsk′
. (5.10)

This Green’s function corresponds to the Feynman’s boundary conditions in the boosted

frame. Thus, in the fast moving spacecraft, the retarded Green’s function (5.10), obtained

as a result of Lorentz transformation from (5.7) looks like a mixture of the retarded [pro-

portional to θ(t′)] and the advanced [proportional to θ(−t′)] Green’s functions with respect

to the spacecraft time t′. In fact, the situation is even more complicated. If from the very
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beginning we work in the comoving spacecraft frame (sc), then solving (5.2) we obtain the

following expression for the retarded Green’s function,

Gsc
R (t′, k′) =

θ(t′)

2ik′cs

(

eiω′

+
t′ − eiω′

−
t′
)

. (5.11)

which coincides with equation (5.7), only if csv < c2. However, for fast moving spacecraft,

csv > c2, formula (5.11) does not coincide with formula (5.10).

The situation is more interesting in the four dimensional spacetime. Similar to the 2d

case, after we apply the Lorentz boost to the retarded (in the rest frame) Green’s function

(see e.g. [52])

Grf
R(t, xi) =

θ (t)

2csπ
δ
(

c2
st

2 − |x|2
)

, (5.12)

and calculate its Fourier transform (see appendix F for the details) we find that for the

slowly moving spacecraft, vcs < c2,

Grf
R(t′, k′) =

θ (t′)

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2/c4

1 − v2/c2

)−1/2
(

eiω′

+t′ − eiω′

−
t′
)

. (5.13)

That is, the resulting Green’s function is also retarded with respect to the spacecraft time

t′. On the other hand, for the fast moving spacecraft, vcs > c2, we obtain:

Grf
R(t′, k′) = − 1

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2/c4

1 − v2/c2

)−1/2
(

θ
(

t′
)

eiω′

+t′ + θ
(

−t′
)

eiω′

−
t′
)

. (5.14)

Similar to the 2d case formula (5.14) is the Feynman Green’s function in the spacecraft

frame. Note that formula (5.14) can be rewritten as:

Grf
R(t′, k′) =

1

2cs

(

k2
x′ + k2

⊥

1 − c2
sv

2/c4

1 − v2/c2

)−1/2

× (5.15)

× exp

(

−ikx′vt′
1 − c2

s/c
2

1 − c2
sv

2/c4
− 1 − v2/c2

c2
sv

2/c4 − 1
cs

∣

∣t′
∣

∣

√

k2
⊥

1 − v2/c2

c2
sv

2/c4 − 1
− k2

x′

)

.

It is obvious from here that the modes with large k⊥are exponentially suppressed and

therefore very high frequency source δJ cannot excite perturbations with k2
⊥ satisfying

inequality (5.4).

In the spacecraft frame the retarded Green’s function calculated directly for Fourier

modes of (5.2) is:

Gsc
R (t′, k′) =

θ (t′)

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2/c4

1 − v2/c2

)−1/2
(

eiω′
+t′ − eiω′

−
t′
)

.

It coincides with Green’s function (5.13), obtained by applying the Lorentz transformation,

only in the case of slow motion with v < c2/cs. However, the results drastically differ for

the fast moving spacecraft - compare equations (5.13) and (5.14). The function Gsc
R(t′, k′)

contains exponentially growing modes for sufficiently large k⊥ and it’s Fourier transform

to coordinate space Gsc
R(t′, x′) does not exist. Physically this means that we have failed to
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find the Green’s function, which describes the propagation of the signal which the source

δJ in the fast moving spacecraft tries to send in the direction of growing t′. Instead,

the response to any source in the spacecraft is always driven by (5.15) (or the Lorentz

transformed Green’s function in the rest frame (5.12)). Because we cannot send a signal in

the direction of growing t′ one cannot associate growing t′ with the arrow of time contrary

to the claims in [30]. We would like to emphasize that the correctly defined causal Green

functions should guarantee the propagation in the future influence cone,(which is defined

geometrically) instead of propagation forward in a time coordinate.

Now we will discuss in more details how the problem of initial conditions for perturba-

tions π must be correctly formulated in the fast moving spacecraft. The first question here

whether the fast moving astronaut can create an arbitrary initial field configurations π and

π̇ at a given moment of his proper time t′1 = const. This hypersurface is not space-like with

respect to the metric G−1
µν and therefore as it follows from the consideration in the previous

section the Cauchy problem is not well posed on it. Hence not all possible configurations

are admissible on this hypersurface but only those which could be obtained as a result of

evolution of some initial configuration chosen on the hypersurface which is simultaneously

spacelike with respect to both metrics gµν and G−1
µν . If the astronaut disturbs the back-

ground with some device (source function δJ) which he/she switches off at the moment

of time t′1, then the resulting configuration of the field on the hypersurface t′1 = const

obtained using the correct Green’s function (5.15) will always satisfy the conditions needed

for unambiguous prediction of the field configuration everywhere in the spacetime irrespec-

tive of the source δJ(x). The presence of the advanced mode in this Green’s function plays

an important role in obtaining a consistent field configuration on t′1 = const. Thus we see

that not “ everything” is in the hand of the astronaut: he has no “ complete freedom” in

the choice of the “ initial” field configuration at time t′1. Nonrecognition of this fact leads

to the fictitious causal paradoxes discussed in the literature [2, 30].

For a slowly moving spacecraft, v < c2/cs, the retarded Green’s function in the rest

frame is transformed in the retarded Green’s function in the spacecraft frame. Therefore

we can obtain any a priori given field configuration on the hypersurface t′1 = const by

arranging the source function δJ in the corresponding way. Thus, the choice of the initial

conditions for the perturbations at t′1 = const is entirely in the hand of the astronaut. This

is in complete agreement with our previous consideration because in the slowly moving

spacecraft the hypersurface t′1 = const is spacelike with respect to both metrics.

The appearance of the advance part in the correct Green’s function for the fast moving

spacecraft still looks a little bit strange because according to the clocks of the astronaut

the head of the spacecraft can “ feel” signals sent at the same moment of time by a device

installed on the stern of the spacecraft. However, in this case the proper time of the

astronaut is simply not a good coordinate for the time ordering of the events at different

points of the space related by the k-essence superluminal signals. The causality is also

preserved in this case but it is determined by the superluminal k-essence cone which is

larger than the light cone and as we have already seen no causal paradoxes arise in this

case. If the astronaut synchronizes his clocks using the superluminal sonic signals then the

new time coordinate t̃ becomes a good coordinate for the time ordering of the causal events
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in different points of the space. The hypersurface t̃ = const being spacelike in both metrics

can then be used as the initial hypersurface for the well posed Cauchy problem in the fast

moving spacecraft, that is, any initial configuration of the field can be freely created by

the astronaut on this hypersurface. In the “ well synchronized’ reference frame
(

t̃, x̃, ỹ, z̃
)

the equation of motion for perturbations (5.1) takes the same form as in the rest frame of

the k-essence background:

∂2
t̃
π − c2

s △x̃ π = ξδJ. (5.16)

It follows from here that

ω± = ±cs

√

k2
x̃ + k2

ỹ + k2
z̃ ,

and hence no exponentially growing modes exist for any kx̃, kỹ and kz̃.

The causal Green’s function in the spacecraft frame contains only the retarded with

respect to the time t̃ part. For example, in four-dimensional spacetime it is given by

Gsc
R (t̃, x̃i) =

θ
(

t̃
)

2csπ
δ
(

c2
s t̃

2 − |x̃i|2
)

. (5.17)

This result can be obtained either by applying the Lorentz transformation with the in-

variant speed cs to (5.7), or directly by solving equation (5.16). Thus, no paradoxes with

Green’s functions arise for the superluminal perturbations. The same conclusions are valid

in 4d spacetime.

To make the consideration above even more transparent we conclude this section by

considering analogous situation with no superluminal signals involved. Namely, we take

a fluid at rest with a subluminal speed of sound, cs < c. Then we can make the Lorentz

transformation using the invariant speed cs:

t′ =
t − vx/c2

s
√

1 − v2/c2
s

, x′ =
x − vt

√

1 − v2/c2
s

, x′
J = xJ .

If the speed v is such that cs/c < v/cs < 1, then the hypersurface of constant t′ is inside the

light cone (see figure 4) and it is obvious that one cannot formulate the Cauchy problem

for the electromagnetic field on the hypersurface t′ = const. Instead, the Cauchy problem

for the electromagnetic field can be well posed on the hypersurface t̃ = const defined by

the “ correct” Lorentz transformation, with the invariant speed c:

t̃ =
t − vx/c2

√

1 − v2/c2
, x̃ =

x − vt
√

1 − v2/c2
, x̃J = xJ ,

(see figure 4). This consideration is fully equivalent to those one above with the only

replacement cs ↔ c.

Thus we have shown that no physical paradoxes arise in the case when we have super-

luminal propagation of small perturbations on the background.

6. Chronology protection

It was claimed in [8] that the theories with superluminal propagation are plagued by closed

causal curves (CCC). We will argue here that the superluminal propagation cannot be the
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O

t′

x′

x̃

light cone

acoustic cone

xJ

Figure 4: It is shown how one can create a would -be “paradox” similar to that discussed in

this section, without involving any superluminal signals. The fluid is at rest and the perturbations

propagate subluminally in the fluid, cs < c. The reference frame (t′, x′) is connected to the

rest frame by the Lorentz boost with the invariant speed cs. If the boost speed v is such that

cs/c < v/cs < 1, then the hypersurface of constant t′ is inside the light cone and the Cauchy

problem for the electromagnetic field is ill posed in this reference frame. Instead, one should use

the “correct” frame (t̃, x̃), obtained by the Lorentz boost with the invariant fastest speed c = 1. In

this frame the Cauchy problem is well-posed.

sole reason for the appearance of CCC and moreover this problem can be avoided in this

case in the same way as in General Relativity.

It is well know that General Relativity admits the spacetimes with the closed causal

curves without involving any superluminal fields into consideration. Among examples of

such spacetimes are: Gödel’s cosmological model [21], Stockum’s rotating dust cylinder [59],

wormholes [25], Gott’s solution for two infinitely long strings [22] and others [24]. A

prominent time-machine model was suggested recently by Ori [23]. In this model, made

solely of vacuum and dust, the spacetime evolves from a regular normal asymptotically

flat state without CCCs and only later on develops CCCs without violating the weak,

dominant and strong energy conditions.5 Thus, we see that initially “ good” spacetime

might in principle evolve to a state where the chronology is violated and the General

5It is worthwhile noting that the stability of this solution is an open issue. Moreover, it is unclear

whether one could obtain this solution from weak-field initial data. Having in mind the classical Singularity

theorems (see e.g. book [39]) one could expect that the spacetime considered in the ref. [23] may become

singular when solving backwards in time. However, we think that this possible past singularity does not

diminish the importance of this result, because all solutions of Einstein equations for dust are singular, and

the best example of such singular in the past solutions is the Friedmann universe. Finally we would like

to stress that initial data for some equations of motion can be prepared by operation of external sources

or can arise due to earlier physical processes which are not described by these equations. Thus solving the

equations of motion backwards in time can become physically meaningless.
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Relativity does not by itself explains these strange phenomena. Therefore one needs to

invoke some additional principle(s) to avoid the pathological situations with CCCs. With

this purpose Hawking suggested the Chronology Protection Conjecture, which states that

the laws of physics must prohibit the appearance of the closed timelike curves [20]. In [20]

it was argued that in the situation when the timelike curve is ready to close, the vacuum

polarization effects become very large and the backreaction of quantum fields prevents the

appearance of closed timelike curves.

Similarly to General Relativity, one might assume that in the case of superluminal prop-

agation the chronology protection conjecture is valid as well. For example, the chronology

protection was already invoked to exclude the causality violation in the case of two pairs

of Casimir plates [19], in which photons propagate faster than light due to the Scharnhorst

effect [16].6

Once we employ the chronology protection principle, no constructions admitting CCCs,

similar to those presented in [8], may become possible.

In fact, the first example in [8] with two finite fast moving bubbles made of superluminal

scalar field (see figure 2 in ref. [8]) is quite similar to the “ time machine” involving two pair

of Casimir plates. In the latter case the chronology protection excludes the existence of

CCCs. Here the situation is a little bit more involved. In the example with the bubbles the

background is not a free solution of the equation of motion (2.3). Indeed as it was pointed

out in [8] the fast moving bubbles have to be separated in the direction orthogonal to the

direction of motion. On the other hand they have to be connected by light. However,

if this were a free solution, then the bubbles would expand with the speed of light and

collide at the same moment of time, or even before the closed causal curve would be

formed. Thus an external source J(x) of the scalar field is required in order to produce

this acausal background. However, without clear idea about the origin of this source and

possible backreaction effects the physical interpretation of this “ time machine” is obscure.

It is well known that admitting all possible sources of gravitational field one can obtain

almost any possible even acausal solutions in general relativity. Finally, generalizing the

Hawking conjecture to the case of scalar field one can argue that the backreaction of

quantum fluctuations of perturbations π around φ become large before CCC is formed

thus destroying the classical solution imposed by the external source J(x) and preventing

the formation of CCC.

The other example considered in [8] involves non-linear electrodynamics. The elec-

tromagnetic field is created by charge currents, serving as a source. Thus, unlike the

previous example, one can control the strength of the field, simply changing the config-

uration of charges. The electromagnetic part of the Lagrangian is the “ wrong” -signed

Euler-Heisenberg Lagrangian:

L = −1

4
FµνFµν − α (FµνFµν)2 + . . . , (6.1)

with a small positive α. For such a system the propagation of light in a non-trivial back-

ground is superluminal. As a consequence, a cylindrical capacitor with the current-carrying

6Note that the superluminal front velocity in this effect was recently put under question in [10]
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solenoid leads to the appearance of the CCCs, provided the electrical and magnetic fields

inside the capacitor are large enough (see figure 3 in [8]). In this case one may invoke

a simplified version of the chronology protection conjecture. In fact, let us begin with

some “ good” initial conditions in the capacitor, namely, with electric and magnetic fields

being not too large, so that no CCCs exist. Then we increase the current in the solenoid

and the voltage between the plates of a capacitor in order to increase the strength of the

fields. When the causal curves become almost closed, the expectation value of the energy-

momentum tensor for the “ quasi-photons” on this classical electromagnetic background

becomes very large due to the quantum vacuum polarization effects. In the limit when

the causal cone becomes horizontal, the energy density of the field in the capacitor tends

to infinity and the capacitor will be broken before the CCCs will be formed. It is worth-

while mentioning that the example under consideration not only involves external fields

(currents) but also nontrivial boundary conditions. Obviously these current configuration

and boundary conditions break Lorentz invariance explicitly and define the preferred ref-

erence frame of the device consisting of the capacitor and the solenoid. Therefore the large

field values measured by the device which produces them may indicate the breaking of the

effective field theory.

Thus we conclude that concerning the causal paradoxes the situation in the theories

with superluminal propagation on the non-trivial backgrounds is not much worse than in

General Relativity. In fact, in this respect the similarity between these two theories goes

even much deeper than it looks at the first glance. For example, let us imagine a time

machine which is constructed with the help of superluminal propagation in non-trivial

background produced by the external source J (x), e.g., similar to those described in [8].

Then we can identify the effective metric Gµν for this system with the gravitational metric

gµν of some spacetime produced by an energy-momentum tensor T
(J)
µν (x). Put differently,

once having the effective metric, we can find spacetime where the gravitational metric is

Gµν . In this spacetime the time machine exists as well. Remarkably, now the gravitation

(or light) signals are used to make CCCs. The spacetime with the metric Gµν is the solution

of Einstein equations with the energy-momentum tensor T
(J)
µν calculated substituting the

metric in the Einstein equations. After that one could try to find such theories and such

fields configurations on which their resulting energy momentum tensor is equal to T
(J)
µν (x)

consistently with equations of motion. One can, in principle, argue, that in the case when

the CCCs exist the energy-momentum tensor mights have some undesired properties, for

example, it would violate the Week Energy Condition (WEC). However, in several known

examples with CCCs the WEC is satisfied, see, e.g. refs. [21, 22, 59]. Moreover, the system

found by A. Ori [23] possesses CCCs and satisfies the week, dominant and strong energy

conditions. Thus the violation of the energy conditions is not an inherent property of

the spacetimes with CCCs. Therefore the question, whether the spacetime constructed by

the procedure described above requires “ bad” energy-momentum tensor or not, must be

studied separately in each particular case.

Moreover the correspondence Gµν ↔ gµν , J ↔ T
(J)
µν can also be used to learn more

about Chronology Protection Conjecture and time-machines in General Relativity with the

help of more simple theory. It is well-known that Analogue Gravity [60] gives more simple
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and intuitively clear way to investigate the properties of Hawking radiation, the effects of

Lorentz symmetry breaking, transplanckian problem etc., by using the small perturbations

in the fluids instead of direct implication of General Relativity. In a similar way, analogue

time-machine or analogue Chronology Protection Conjecture may provide one with a tool to

check Chronology Projection Conjecture and the possibility of construction of time machines

in General Relativity.

7. Is the gravitational metric universal?

It was argued in [3] that the same causal limits apply to all fields independent of the matter

present, thus endowing the gravitational metric with the universal role. However, in the

theories under consideration the causal limit is governed not by the gravitational metric

gµν , but by the effective acoustic metric G−1
µν and hence the gravity loses its universal role in

this sense. Nevertheless, here we argue, that even in the case of the spontaneously broken

Lorentz invariance with a superluminal propagation the gravitational metric gµν still keeps

its universal role in the following sense. First in accordance with the discussion in 4 we

remind that the Cauchy hypersurface for the field φ should anyway be a spacelike one in

the gravitational metric. Thus in order to produce a background which breaks the Lorentz

invariance one has to respect the usual causality governed by the gravitational metric gµν .

Moreover, if a clump of the scalar field is created in a finite region surrounded by a trivial

background, then the boundaries of the clump will generically propagate with the speed of

light.

Indeed, let us consider a finite lump of non-trivial field configuration with smooth

boundaries (see figure 5) and assume that the initial data
(

φ(x), φ̇(x)
)

are specified in

some finite spatial region R. These initial data are smooth everywhere (see figure 5) and

satisfy the conditions (4.5) and (4.2), in particular the first derivatives of the field φ are

continuous everywhere including the boundaries of the clump. If the system described

by action (2.1) has at least one trivial solution φ = φtriv = const with non-pathological

acoustic geometry, then, as it follows from (2.3) and (2.12), the Lagrangian L(φ,X) is at

least twice differentiable at (φ,X) = (φtriv, 0) and moreover L,X(φtriv, 0) 6= 0. Thus for the

theories of this type we have

L(φ,X) ≃ V (φ) + K1(φ)X + K2(φ)X2 + . . . (7.1)

in the vicinity of the trivial solution φtriv.
7 And as expected we conclude that the speed of

sound for the small perturbations is equal to the speed of light in the vicinity of φtriv because

any trivial solution and in particular a possible vacuum solution φ = 0 does not violate

the Lorentz invariance. Moreover, close to the boundaries of the clamp the initial data
(

φ(x), φ̇(x)
)

can be considered as small perturbation around the trivial background and

therefore the front of the clump propagates exactly with the speed of light in the vacuum.

Thus, without preexisting nontrivial configuration of the scalar field the maximum speed

7In particular, it was required in [57] that for models allowing topological k-defects, the asymptotic

behavior near the trivial vacuum X = 0 (at the spatial infinity) is of the form (7.1)
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φ(x)
φ̇(x)

Figure 5: The figure shows that the gravitational metric gµν keeps its universal meaning even if

the small perturbations on the non-trivial backgrounds propagate superluminally. If in the initial

moment of time the non-trivial configuration of the field φ is localized in the finite region R on a

spacelike in gµν hypersurface Σ, and beyond this region the field φ is in its vacuum state φ = const,

then the front of the solution always propagates with the speed of light. The blue lines correspond

to the light rays. The pink cones represent the influence cones for k-essence. On the boundary of

R the influence cones are equal to light cones.

of propagation never exceeds the speed of light and the causality is entirely determined by

the usual gravitational metric only.

If we abandon the condition of the regularity of the emergent geometry G−1
µν , but still

require that the Lagrangian is analytic function of X in the neighborhood of X = 0, then

the speed of propagation in vacuum is always smaller than the speed of light. Indeed in

this case the speed of sound cs is:

c2
s =

1

(1 + 2 (n − 1))
< 1,

where n is the power of the first non-zero kinetic term in (7.1).

To demonstrate explicitly the points stated above we will find now exact solitonic

solutions in the purely kinetic k-essence theories with Lagrangian L (X) and verify that

these solitons propagate in the Minkowski spacetime with the speed of light. Assuming

that the scalar field depends only on θ ≡ x+vt and substituting φ = ϕ (θ) in equation (2.3)

we find that this equation reduces to

L,Xϕ,θθ

(

v2 − 1
)

+ L,XXϕ,θθϕ
2
,θ

(

v2 − 1
)2

= 0, (7.2)

This equation is trivially satisfied for v = ±1, that is, there exist solitary waves ϕ (x ± t)

propagating with the speed of light. They are solutions corresponding to rather special

initial conditions φ0 (x) = ϕ (x) and φ̇0 (x) = ±ϕ (x). Note that the general solutions are

not a superposition of these solitonic solutions because the equation of motion is nonlinear.

Assuming that v 6= ±1 we find that (7.2) is satisfied by either nonlocalized solution φ =

x ± vt + const, or it reduces to:

L,X + L,XXϕ2
,θ

(

v2 − 1
)

= L,X + 2XL,XX = 0, (7.3)
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This algebraic equation is trivially satisfied for all X if L =f (φ)
√

X − V (φ) . This is the

case when the perturbations propagate with the infinite speed on any background [63].

For more general Lagrangians L (X) equation (7.3) can be solved algebraically to obtain a

particular X0 = 1
2ϕ2

,θ

(

v2 − 1
)

= const. The only solutions of this last equation are either

ϕ (x ± t) or trivial solutions φtriv = const. For the Born-Infeld Lagrangian [56] the exact

solutions of this type were found in [61] (see also [62]). For more complicated Lagrangian,

for example, of the form L = K(X) + V (φ) there exist solitonic solutions with v < 1 [57].

Thus, we have shown that under reasonable restrictions on the theory the field config-

urations localized in trivial vacuum never propagate faster than light. Therefore the causal

limit for these localized configurations is always governed by the usual gravitational metric.

8. Discussion

In this paper we have considered the k-essence-like scalar fields with the Lorentz invariant

action (2.1) and have studied the issues of causality and Cauchy problem for such theories.

These questions are non-trivial because small perturbations π on backgrounds φ0 can prop-

agate faster-than-light. The perturbations “ feel” the effective metric, Gµν given by (2.12),

which is different from the gravitational metric gµν , if the Lagrangian L is a non-linear

function of X and the background is nontrivial ∂µφ0 6= 0. We have derived the action for

the perturbations on an arbitrary background and have shown that these perturbations “

feel” the emergent geometry G−1
µν . The influence cone determined by G−1

µν is larger than

those one determined by metric gµν provided L,XX/L,X < 0 [6, 36, 33]. Thus perturbations

can propagate with the speed exceeding the speed of light. In this case the background

serves as a new aether and preselects the preferred reference frame. This is why the causal

paradoxes arising in the presence of tachyons8 (superluminal particles in the Minkowski

vacuum) do not appear here. In particular, we have shown that in physically interesting

situations, namely, cosmological solutions and for the case of a black hole surrounded by an

accreting fluid, the closed timelike curves are absent and hence we cannot send the signal

to our own past using the superluminal signals build out of the “ superluminal” scalar field

perturbations. Thus, the k-essence models, which generically possess the superluminal

propagation, do not lead to the causal paradoxes, contrary to the claim in [2, 30].

We have shown how to pose correctly the Cauchy problem for the k-essence fields

with superluminal propagation, which sometimes might seem problematic [8]. The correct

initial Cauchy hypersurface Σ must simultaneously be spacelike with respect to both grav-

itational metric gµν and the effective metric G−1
µν . Because the effective metric G−1

µν itself

depends on the values of the field φ and its first derivatives, the initial value problem must

be set up in a self-consistent manner: in addition to the usually assumed hyperbolicity

condition (2.5), one must require that the field φ and its derivative on Σ must satisfy the

inequality (4.4). In particular, in the case of spacecraft which has very large velocity with

respect to the homogeneous background of the k-essence, the latter conditions are violated

on the hypersurface of constant astronaut proper time. Therefore no physical devices are

able to produce an arbitrary configuration of perturbations on this hyperspace.

8Do not confuse them with field theoretical tachyons with m2 < 0.
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It was found in [8] that in the theories under consideration one can have the back-

grounds possessing the closed causal curves (CCCs). However, as we have argued above,

this is not directly related to the superluminal propagation. In fact, the situation here

is very similar to the situation in General Relativity, where one can also have the man-

ifolds with the closed causal curves although the speed of propagation is always limited

by the speed of light. In this respect the situation in the theories with the superluminal

propagation is not worse than in General Relativity. To avoid causal paradoxes in General

Relativity, Hawking suggested the Chronology Protection Conjecture, which states that the

quantum effects and, in particular, vacuum polarization effects can prevent the formation

of the closed timelike curves [20]. Similarly to Hawking one may argue that in the case of

the superluminal propagation the Chronology Protection Conjecture can be valid as well.

Once we employ the Chronology Protection Conjecture, no constructions admitting CCCs,

similar to those presented in [8], are possible.

Sometimes the “superluminal” theories are criticized in the literature on the basis of

general, or better to say, aesthetic grounds. For example, ref. [3] claims: “The spacetime

metric is preferred in terms of clock measurements and free fall (geodesic) motion (including

light rays), thus underlying General Relativity’s central theme of gravity being encoded

in spacetime curvature.” Although this argument is not more than the matter of taste,

we would rather prefer to have General Relativity as a theory which keeps its (restricted)

universal meaning even in the presence of superluminal propagation. We have argued that

under physically reasonable assumptions and without a preexisting nontrivial background

the causality is governed by metric gµν . Indeed, if initially the field φ is localized within

some finite region of space surrounded by vacuum, then the border of this region propagates

with the speed of light and it is impossible to send signals faster than light.
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A. Characteristics and superluminal propagation

Let us consider scalar field φ interacting with external source J (x). The equation of motion

for the scalar field is

G̃µν∇µ∇νφ + ε,φ = J (A.1)
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where metric G̃µν is given by (2.4) and for brevity we use the “ hydrodynamic” notation

ε (X,φ) = 2XL,X − L (see appendix E). Suppose φ0 is the background solution of (A.1)

in the presence of source J0 (x) and gravitational metric gµν (x). Let us consider a slightly

perturbed solution φ = φ0 + π of (A.1) with the source J = J0 + δJ and the original

unperturbed metric gµν (x). The equation of motion for π is then

G̃µν∇µ∇νπ + ε,φφπ + ε,φXδX + δG̃µν∇µ∇νφ0 = δJ, (A.2)

where

δX = ∇νφ0∇νπ and δG̃µν =
∂G̃µν

∂φ
π +

∂G̃µν

∂∇αφ
∇απ.

This equation can be written as

G̃µν∇µ∇νπ + V µ∇µπ + M̃2π = δJ, (A.3)

where

V µ (x) ≡ ∂G̃αβ

∂∇µφ
∇α∇βφ0 + ε,φX∇µφ0, (A.4)

and

M̃2 (x) ≡ ∂G̃αβ

∂φ
∇α∇βφ0 + ε,φφ. (A.5)

Considering the eikonal (or short wavelength) approximation [53] we have π (x) =

A (x) exp iωS (x), where ω is a large dimensionless parameter and the amplitude A (x) is

a slowly varying function. In the limit ω → ∞ the terms containing no second derivatives,

V µ (x)∇µπ and M̃2 (x)π, become unimportant and (A.3) becomes

G̃µν∂µS∂νS = 0. (A.6)

The equation of motion in the eikonal approximation (A.6) is conformally invariant. The

surfaces of constant eikonal S (constant phase) correspond to the wave front (characteristic

surface) in spacetime. Thus the 1-form ∂µS is orthogonal to the characteristic surface.

The influence cone at point P is formed by the propagation vectors Nµ tangential to the

characteristic surface Nµ∂µS = 0 and positive projection on the time direction. Using (A.6)

one can chose Nµ = G̃µν∂νS and verify that this vectors are tangential to the characteristic

surface. The metric G̃µν has an inverse G̃−1
µν due to the requirement of hyperbolicity

(Lorentzian signature of G̃µν). Therefore ∂νS = G̃−1
µν Nµ and we obtain the equation for

the influence cone in the form

G̃−1
µν NµNν = 0. (A.7)

Thus the metric G̃−1
µν governs the division of acoustic spacetime into past, future and

inaccessible “spacelike” regions (or in other words this metric yields the notion of causality).

It is well known that this division is invariant under conformal transformations. From

action (2.10) for perturbations π, which we derive in appendix B, it follows that in four

dimensions it is natural to consider a conformally transformed metric G−1
µν =

(

L2
,X/cs

)

G̃−1
µν .

Using this metric from (2.12) one obtains

G−1
µν NµNν =

L,X

cs
gµνNµNν − csL,XX (∇µφNµ)2 .
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Therefore

gµνNµNν = c2
s

(L,XX

L,X

)

(∇µφNµ)2 ,

and if L,XX/L,X is negative, then gµνNµNν < 0, that is, Nµ is spacelike and the cone of

influence on this background is larger than the light cone: the wave front (or signal) velocity

is larger then the speed of light. Note that this is a coordinate independent statement. The

three dimensional front velocity vi ≡ dxi/dt can be calculated from the components of the

propagation vector Nµ as follows. First we parametrize the ”phonon path” or null geodesic

in emergent geometry G−1
µν by the parameter λ. In that case Nµ =

(

dt/dλ, dxi/dλ
)

and

therefore vi = N i/N0. If X > 0 then in the locally Minkowski ”rest frame” this definition

yields vi = cse
i where ei is unit vector in i-direction.

B. Action for perturbations, expanding the equation of motion

Here we sketch the derivation of action (2.10) for π in the spacetime of arbitrary dimension

D > 2. First of all we would like to investigate whether there exists a metric Gµν for which

the equation of motion for perturbations π takes a canonical (Klein-Gordon) form

GµνDµDνπ + M2
effπ = δI, (B.1)

where Dµ is a covariant derivative with associated with the new metric Gµν : DµGαβ = 0.

Note that the equations of motion (A.2) and (B.1) should have the same influence cone

structure. Thus the metrics Gµν and G̃µν must be related by conformal transformation and

if it is really possible to rewrite (A.2) in canonical form, then there must exist Ω (φ0,X0) ,

such that

Gµν = ΩG̃µν . (B.2)

Therefore our first task is to find Ω (φ0,X0). Note that this method makes sense for the

dimensions D > 2 only. That happens because in D = 2 all metrics are conformally

equivalent to ηµν and the wave equation is conformally invariant, see e.g. ref. [39], P. 447.

Let us define the following covariant derivative

DµAν = ∇µAν − Lλ
µνAλ (B.3)

which is compatible with the new metric whereas ∇µAν = ∂µAν −Γλ
µνAλ denotes the stan-

dard covariant derivative associated with the gravitational metric: ∇µgαβ = 0, as usual.

Note, that the tensor Lλ
µν introduced in (B.3) is the difference of the Christoffel symbols

corresponding to the effective and gravitational metrics. Comparing (A.2) and (B.1) we

infer that

ΩG̃µνDµDνπ + M2
effπ = ΩG̃µν∇µ∇νπ − ΩG̃µνLλ

µν∇λπ + M2
effπ

must be equal (up to a multiplication by a scalar function Ω) to the l.h.s of (A.3). These

can be true only if the following condition holds

G̃µνLλ
µν = −V λ, (B.4)

– 28 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
1

where V λ is defined in (A.4). When this condition is satisfied we can always make the

redefinition

M2
eff = ΩM̃2 and δI = ΩδJ,

where M̃2 is defined in (A.5). The connection Lλ
µν depends on the unknown function Ω

(and its derivatives) which has to be obtained form (B.4). To solve (B.4) it is convenient

to multiply its both sides by Ω. Then using (A.4) and (B.2) this condition takes the form:

GµνLλ
µν = −Ω

(

∂G̃αβ

∂∇λφ
∇α∇βφ0 + ε,φX∇λφ0

)

. (B.5)

Let us now solve (B.5) with respect to Ω. In complete analogy with the formula (86,6)

from ref. [53] we have

GµνLλ
µν = − 1√

−G
∇α

(√
−GGαλ

)

, (B.6)

where
√
−G =

√

−detG−1
µν = Ω−D/2

√

−detG̃−1
αβ , and D is the number of dimensions of the

spacetime. Using the formula (B14) from ref. [33] one obtains

detG̃αβ = (L,X)D c−2
s det (gµν) , and detG̃−1

αβ = (L,X)−D c2
sdet (gµν) . (B.7)

Finally we arrive to the relation,

√
−G = cs

√−g (ΩL,X)−D/2 . (B.8)

It is convenient to introduce the auxiliary function

F = cs (ΩL,X)−D/2 Ω. (B.9)

and then using (B.6), we can rewrite equation (B.5) as:

∇α

(

FG̃αλ
)

= F

(

∂G̃αβ

∂∇λφ
∇α∇βφ0 + ε,φX∇λφ0

)

. (B.10)

Differentiating the metric G̃αλ from the l.h.s. of the last equation in accordance with the

chain rule we find:

G̃αλ∇αF = F

((

∂G̃αβ

∂∇λφ
− ∂G̃αλ

∂∇βφ

)

∇α∇βφ0 −
(

∂G̃αλ

∂φ
− ε,φXgλα

)

∇αφ0

)

. (B.11)

Further we obtain

∂G̃αλ

∂φ
∇αφ0 = (L,Xφ + 2XL,XXφ)∇λφ0 = ε,φX∇λφ0. (B.12)

For the first term in the brackets in (B.11) we have:

∂G̃αβ

∂∇λφ
= L,XX

(

gαβ∇λφ0 + gλα∇βφ0 + gλβ∇αφ0

)

+ L,XXX∇αφ0∇βφ0∇λφ0, (B.13)
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and therefore
∂G̃αβ

∂∇λφ
− ∂G̃αλ

∂∇βφ
= 0. (B.14)

Thus the r.h.s. of (B.11) identically vanishes. Note that there exists the inverse matrix

G̃−1
αλ to G̃αλ. Therefore from (B.11) we conclude that ∇αF = 0 or F = const on all

backgrounds and for all theories. One can argue that F takes the same value for all theories

and all backgrounds. Indeed for a given theory the conformal transformation (B.2) is local,

therefore F cannot depend on the background. If F does not depend on the background,

then this constant cannot depend on the form of the Lagrangian. Considering the linear

case, L (φ,X) = X − V (φ), we infer that F = cs (ΩL,X)−D/2 Ω = 1 or

Ω =
(

csL−D/2
,X

)1/(D/2−1)
. (B.15)

This choice of normalization F can be easily verified by direct calculations of Sπ by expand-

ing Sφ to quadratic order in π for any L (φ,X), see calculations in the next appendix C.

Having calculated Ω we can formulate the main result of this appendix as follows: the

action from which one can obtain the equation of motion in the canonical Klein-Gordon

form (B.1) is

Sπ =
1

2

∫

dDx
√
−G

[

Gµν∂µπ∂νπ − M2
effπ2 + 2πδI

]

, (B.16)

where the emergent metric Gµν is the conformally transformed eikonal metric G̃µν , defined

in (2.4),

Gµν ≡
(

csL−D/2
,X

)1/(D/2−1)
G̃µν =

(

cs

L,X

)1/(D/2−1) [

gµν +

(L,XX

L,X

)

∇µφ∇νφ

]

. (B.17)

The inverse metric G−1
µν can be easily calculated using the ansatz G−1

µν = αgµν +β∇µφ0∇νφ0

and is given by the formula

G−1
µν =

(

cs

L,X

)−1/(D/2−1) [

gµν − c2
s

(L,XX

L,X

)

∇µφ0∇νφ0

]

. (B.18)

Finally the effective mass is

M2
eff =

(

csL−D/2
,X

)1/(D/2−1)
[

2XL,Xφφ − L,φφ +
∂G̃µν

∂φ
∇µ∇νφ0

]

, (B.19)

and the effective source for perturbations is given by

δI =
(

csL−D/2
,X

)1/(D/2−1)
δJ. (B.20)

For the reference we also list the formula

√
−G =

√−g

(

LD
,X

c2
s

)1/(D−2)

. (B.21)
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C. Action for perturbations, action expansion

Here we provide an alternative derivation of the action (B.16) based on the direct systematic

expansion of the k-essence action (2.1) in terms of π. First it is convenient to introduce an

auxiliary small parameter ǫ and redefine perturbations π → ǫπ. After that we can expand

the Lagrangian in ǫ instead of expanding in π:

L (φ,X) = L
(

φ0 + ǫπ,X0 + ǫ∂µπ∂µφ0 + ǫ2Xπ

)

= L (φ0,X0) +

(

dL
dǫ

)

ǫ=0

ǫ +
1

2

(

d2L
dǫ2

)

ǫ=0

ǫ2 + . . . (C.1)

were we denoted Xπ = 1
2∂µπ∂µπ. The quadratic action for perturbations is

Sπ =

∫

dDx
√−g

1

2

(

d2L
dǫ2

)

ǫ=0

ǫ2. (C.2)

For the term linear in ǫ we have

dL
dǫ

= L,φπ + L,X (∂µπ∂µφ0 + 2ǫXπ) .

For φ0 satisfying the equation of motion the second term in the expansion (dL/dǫ)ǫ=0 is a

boundary term which is not interesting for our study. For the quadratic in ǫ term we have

d2L
dǫ2

= L,φφπ2 + 2L,φXπ (∂µπ∂µφ0 + 2ǫXπ) + L,XX (∂µπ∂µφ0 + 2ǫXπ)2 + 2L,XXπ,

and
(

d2L
dǫ2

)

ǫ=0

= L,φφπ2 + 2L,φXπ∂µπ∂µφ0 + L,XX (∂µπ∂µφ0)
2 + 2L,XXπ.

Recovering the original perturbations ǫπ → π we arrive to the following quadratic action

for perturbations:

Sπ =

∫

dDx
√−g

1

2

(

L,φφπ2 + 2L,φXπ∂µπ∂µφ0 + L,XX (∂µπ∂µφ0)
2 + 2L,XXπ

)

.

Combining two last terms and using the definition (2.4) of the eikonal metric G̃µν we bring

the action to the form:

Sπ =

∫

dDx
√−g

1

2

(

G̃µν∂µπ∂νπ + L,φφπ2 + L,φX∂µπ2∂µφ0

)

.

Further the last term can be transformed as
∫

dDx
√−gL,φX∂µπ2∂µφ0 =

∫

dDx
√−g

[

∇µ

(

L,φXπ2∂µφ0

)

− π2∇µ (L,φX∂µφ0)
]

.

Omitting the boundary term we obtain

Sπ =
1

2

∫

dDx
√−g

(

G̃µν∂µπ∂νπ − µ2
effπ2

)

,
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where µ2
eff = ∇µ (L,φX∂µφ0)−L,φφ. It is interesting for us to find such a metric Gµν which

is conformally equivalent to G̃µν : Gµν = ωG̃µν , and satisfies

√−gG̃µν =
√
−GGµν , (C.3)

where
√
−G ≡

√

−detG−1
µν and G−1

µλGλν = δν
µ. Using relation

√
−G = ω−D/2/

√

−detG̃µν

we solve equation (C.3) with respect to ω and obtain

ω =
(

gdetG̃µν
)1/(2−D)

.

Further we can use the formula (B.7) and express ω as

ω =
(

L−D/2
,X cs

)1/(D/2−1)
= Ω.

Thus we arrive to the same result (B.15). Moreover, for effective mass we have:

µ2
eff = ∇µ (L,φX∂µφ0) − L,φφ = L,φX∇µ∇µφ0 + L,φXX∇µφ0∇µX + ε,φφ = M̃2,

where M̃2 was given by equation (A.5). Thus we have proved that both approaches give

the same quadratic action for perturbations.

D. Action for the cosmological perturbations

Here we compare the action (2.10) with the action for scalar cosmological perturbations

from refs. [34, 28]. In particular we show that cosmological perturbations propagate in

the metric (2.12) but have an effective mass different from (2.9). Finally we derive the

generally covariant action for the scalar cosmological perturbations.

To begin with let us consider the action (2.10) for a perturbations π (η,x) around a

homogeneous background φ(η) in the spatially flat Friedmann universe

ds2 = gµνdxµdxν = a2 (η)
(

dη2 − dx2
)

= a2 (η) ηµνdxµdxν (D.1)

where η is the conformal time η =
∫

dt/a (t) and ηµν is the standard Minkowski metric.

Using eq. (2.6) and eq. (D.1) one can calculate the effective line element (2.13):

dS2 = G−1
µν dxµdxν =

L,X

cs

[

ds2 − a2c2
s

(L,XX

L,X

)

2Xdη2

]

=
L,X

cs
a2
(

c2
sdη2 − dx2

)

≡ csA
2
(

c2
sdη2 − dx2

)

. (D.2)

where we have introduced the convenient variable

A ≡ √
ε,Xa. (D.3)

Note that for the models respecting the NEC (L,X ≥ 0) the hyperbolicity condition (2.5)

requires ε,X > 0 and therefore A is always well defined. The factor
√
−G can be then

calculated either from the last expression above (D.2) or from the general expression (B.21):

√
−G =

L2
,X

cs
a4 = c3

sA
4. (D.4)
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Using the formulas (2.8) and (2.6) we calculate the kinetic term

Gµν∂µπ∂νπ =
(

csa
2L,X

)−1
(

(

π′
)2 − c2

s(~∇π)2
)

. (D.5)

Thus in the case when the perturbations π do not influence the metric gµν the action (2.10)

takes the form

Sπ =
1

2

∫

d3xdη

[

a2ε,X

(

(

π′
)2 − c2

s(~∇π)2
)

− M2
eff

L2
,X

cs
a4π2

]

, (D.6)

here we have used the definitions of the sound speed (2.6) and energy density (E.2). It is

convenient to introduce the canonical normalization for the perturbations. This is achieved

by the following field redefinition:

ν =
√

ε,Xaπ = πA. (D.7)

Finally integrating by parts and dropping the total derivative terms we obtain the following

“canonical” action

Sπ =
1

2

∫

d3xdη
[

(ν ′)2 − c2
s(

~∇ν)2 − m2
effν2

]

(D.8)

where the new effective mass meff is given by the following expression

m2
eff = M2

eff

√
−G

A2
− A′′

A
=

a2

ε,X

[

ε,φφ +
∂G̃µν

∂φ
∇µ∇νφ0

]

−
(√

ε,Xa
)′′

√
ε,Xa

. (D.9)

or in other terms

m2
eff =

1

ε,X

[

ε,Xφφ′′ + Hφ′ (3p,Xφ − ε,Xφ) + ε,φφa2
]

−
(√

ε,Xa
)′′

√
ε,Xa

. (D.10)

Now let us consider the case of cosmological perturbations in the case where the field φ is

responsible for the dynamics of the Friedmann universe. Following [28, 34] one introduces

a canonical variable υ

υ ≡ √
ε,Xa

(

δφ +
φ′

HΨ

)

= A

(

δφ +
φ′

HΨ

)

, (D.11)

and a convenient auxiliary variable z

z ≡ φ′

H
√

ε,Xa =
φ′

HA, (D.12)

where δφ is the gauge invariant perturbation of the scalar field, H ≡ a′/a and Ψ = Φ is the

gauge invariant Newtonian potential. Using this notation the action for scalar cosmological

perturbations takes the form:

Scosm =
1

2

∫

d3xdη
[

(υ′)2 − c2
s(

~∇υ)2 − m2
cosmυ2

]

(D.13)

where

m2
cosm ≡ −z′′

z
. (D.14)
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It is easily to check that for all cases besides canonical field without potential L(φ,X) ≡ X

m2
cosm 6= m2

eff. (D.15)

However, comparing the action (D.8) with D.13 one arrives to conclusion that the cosmo-

logical perturbations propagate in the same metric (2.8), (2.12). Further one can introduce

the notation δφ for the sometimes so-called “scalar perturbations on the spatially flat

slicing”

δφ ≡ δφ +
φ′

HΨ. (D.16)

For this scalar field the action for cosmological perturbations (D.13) takes the form

Scosm =
1

2

∫

d4x
√
−G

[

Gµν∂µδφ∂νδφ − M2
cosmδφ

2
]

, (D.17)

thus the cosmological perturbations δφ live in the emergent acoustic spacetime with the

metric (2.8), (2.12). Similarly as we have calculated in (D.9) we have

M2
cosm

√
−G

A2
− A′′

A
= M2

cosma2L,Xcs −
(√

ε,Xa
)′′

√
ε,Xa

= −z′′

z
(D.18)

after some algebra the last expression reduces to

χ′′ + 2

(

A′

A

)

χ′ + A2
(

M2
cosmc3

s

)

χ = 0 (D.19)

where we have introduced a new auxiliary field

χ (η) ≡ φ′

H =

(

3

8πGN

)1/2
√

2X

ε
. (D.20)

The equation (D.19) is in turn the Klein-Gordon equation

(

�g +
(

M2
cosmc3

s

))

χ = 0 (D.21)

for the field χ in the metric gµν ≡ A2ηµν = ε,Xgµν conformally related to the gravitational

metric gµν . Thus we have

M2
cosm = −c−3

s χ−1
�g χ. (D.22)

One can rewrite this formula in terms of the gravitational metric gµν . Using the rules of

the conformal transformations we have

�gχ =
1√−g

∇µ

(

√

−ggµν∇νχ
)

=
1

ε2
,X

1√−g
∇µ

(

ε,X
√−ggµν∇νχ

)

= (D.23)

= −∇µχ∇µε−1
,X + ε−1

,X �gχ (D.24)

Thus the effective mass for cosmological perturbations δφ is

M2
cosm = −c−3

s ε−1
,X

(

√

ε

X
�g

√

X

ε
+ ∇µ ln (ε,X)∇µ ln

√

X

ε

)

. (D.25)
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Note that in the case of canonical kinetic terms L(φ,X) = X − V (φ) the last expression

for M2
cosm the simplifies to

M2
cosm,canonical = − (w + 1)−1/2

�g (w + 1)1/2 . (D.26)

where w = p/ε is the equation of state parameter. In particular for the universe filled with

the massless canonical scalar field Mcosm, = 0.

E. Effective hydrodynamics

It is well-known that for timelike ∇νφ (X > 0 in our signature) one can employ the

hydrodynamic approach to describe the system with the action (2.1). To do this one need

to introduce a four-velocity as follows:

uµ ≡ ∇µφ√
2X

. (E.1)

Using (E.1) the energy momentum tensor (2.2) tensor can be rewritten in the perfect fluid

form:

Tµν = (ε + p)uµuν − pgµν ,

where the pressure coincides with the Lagrangian density, p = L(X,φ), and the energy

density is

ε (X,φ) = 2Xp,X − p. (E.2)

The sound speed (2.6) can be expressed [28] as

c2
s =

p,X

ε,X
=

(

∂p

∂ε

)

φ

. (E.3)

In what follows we restrict ourselves to the class of Lagrangians which do not depend

of φ explicitly, p = p (X) and in addition we require that X > 0. This class of models is

equivalent to perfect fluid models with zero vorticity and with the pressure being a function

of the energy density only, p = p(ǫ). Then the expressions (2.6) or (E.3) coincide with the

usual definition of the sound speed for the perfect fluid: c2
s = ∂p/∂ε. Apart from the energy

density ε and pressure p one can also formally introduce the “concentration of particles”:

n ≡ exp

(
∫

dε

ε + p(ε)

)

=
√

Xp,X .

and the enthalpy

h ≡ ε + p

n
= 2

√
X.

In particular the equation of motion (2.3) takes the form of the particle number conservation

law: ∇µ (nuµ) = 0. Using these definitions we can rewrite the induced metric metric Gµν

and its inverse in terms of hydrodynamic quantities only:

Gµν =
hcs

2n

[

gµν −
(

1 − c−2
s

)

uµuν
]

, (E.4)

G−1
µν =

2n

hcs

[

gµν −
(

1 − c2
s

)

uµuν

]

. (E.5)
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To our best knowledge these metrics (E.4) along with an action for the velocity potentials

were introduced for the first time in [55], where the accretion of the perfect fluid onto black

hole was studied. As it follows from the derivation in appendix B, the metric (B.17) and

the action (B.16) derived in our paper are applicable in the more general case of arbitrary

nonlinear scalar field theories L (X,φ) and for all possible (not only timelike X0 > 0)

backgrounds produced by any external sources. Note that the scalar field theory with

Lagrangian L (X,φ) , which explicitly depends on φ, is not equivalent to the isentropic

hydrodynamics, because φ and X are independent and therefore the pressure cannot be

expressed though ε only.

F. Green functions for a moving spacecraft

Here we calculate the retarded Green’s function for a moving spacecraft in the case of three

spatial dimensions. First we calculate the retarded Green’s function in the preferred (rest)

frame and then we perform the Lorentz boost (with the invariant speed c) for the solution.

We compare the result with one obtained by the direct calculation of Green’s function for

the eq. (5.2). We will need the following formulas (Gradshtein, Ryzhik, p.750):

∫ ∞

a
J0

(

b
√

x2 − a2
)

sin (cx) =
cos
(

a
√

c2 − b2
)

√
c2 − b2

, for 0 < b < c (F.1)

= 0, for 0 < c < b (F.2)

∫ ∞

a
J0

(

b
√

x2 − a2
)

cos (cx) = −
sin
(

a
√

c2 − b2
)

√
c2 − b2

, for 0 < b < c (F.3)

=
exp

(

−a
√

b2 − c2
)

√
b2 − c2

, for 0 < c < b (F.4)

∫ a

0
J0

(

b
√

a2 − x2
)

cos (cx) =
sin
(

a
√

c2 + b2
)

√
c2 + b2

, for 0 < b (F.5)

In the preferred frame the Green function is (see e.g. [52])

Grf
R(t, x) =

θ (t)

2csπ
δ
(

c2
st

2 − |x|2
)

. (F.6)

Performing the Lorentz transformation x = γ (x′ + vt′), t = γ (t′ + vx′), where γ =
(

1 − v2
)−1/2

we find the Green function in the moving frame:

Grf
R(t′, x′) =

θ (t′ + vx′)

2csπ
δ
[

γ2
(

c2
s

(

t′ + vx′
)2 −

(

x′ + vt′
)2
)

− y2 − z2
]

. (F.7)

We need to calculate the Fourier transform to the function (F.7). It is convenient to shift

x′ as follows:

x′ = x − vt′
(

1 − c2
s

1 − c2
sv

2

)

. (F.8)
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Then the argument of the delta-function in (F.7) can be rewritten as

γ2
(

c2
s

(

t′ + vx′
)2 −

(

x′ + vt′
)2
)

− y2 − z2 = αc2
st

′2 − α−1x2 − y2 − z2,

where

α =
1 − v2

1 − c2
sv

2
. (F.9)

Now we are ready to proceed with the Fourier transform of (F.7):

Grf
R(t′, k′) =

eiϕ

2csπ

∫ ∞

−∞
dxdydz θ

(

t′ + vx′
)

δ
(

αc2
st

′2 − α−1x2 − y2 − z2
)

eik
x′

x+ikyy+ikzz

(F.10)

where we introduced the notation:

ϕ = −kx′vt′
(

1 − c2
s

1 − c2
sv

2

)

. (F.11)

Step-function in the integral implies that the integration over x is made from x∗ to +∞:

Grf
R(t′, k′) =

eiϕ

2csπ

∫ ∞

x∗

dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz δ

(

αc2
st

′2 − α−1x2 − y2 − z2
)

eik
x′

x+ikyy+ikzz,

x∗ = vt′
(

1 − c2
s

1 − c2
sv

2

)

− t′

v
= − t′

v

(

1 − v2

1 − c2
sv

2

)

= −α

v
t′. (F.12)

Introducing r ≡
√

y2 + z2, φ as the angle between the vectors {ky, kz} and {y, z} and

k⊥ ≡
√

k2
y + k2

z we obtain:

Grf
R(t′, k′) =

eiϕ

2csπ

∫ ∞

x∗

dx

∫ ∞

0
drr

∫ 2π

0
dφδ

(

αc2
st

′2 − α−1x2 − r2
)

eik
x′

x+ik⊥r cos φ. (F.13)

Integrating over r first gives:

Grf
R(t′, k′) =

eiϕ

4csπ

∫ +∞

x∗

dx

∫ 2π

0
dφ exp

(

ikx′x + ik⊥

√

αc2
st

′2 − α−1x2 cos φ

)

(F.14)

for

αc2
st

′2 − α−1x2 > 0, (F.15)

otherwise it is zero. Integrating (F.14) over φ we find:

Grf
R(t′, k′) =

eiϕ

2cs

∫ +∞

x∗

dxJ0

(

k⊥

√

αc2
st

′2 − α−1x2

)

exp (ikx′x) , (F.16)

where J0(x) is the Bessel function of the zeroth order. Now we need to integrate the

expression (F.16) taking into account the condition (F.15).We consider two cases separately:

the case of slow spacecraft, v2c2
s < 1 (α > 0), and the case of rapid spacecraft, v2c2

s > 1

(α < 0).
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For the slow spacecraft we easily obtain from (F.16) and (F.15):

Grf
R(t′, k′) =

eiϕ

2cs
θ(t′)

∫ αcst′

−αcst′
dx J0

(

k⊥

√

αc2
st

′2 − α−1x2

)

eik
x′

x

=
eiϕ

cs
θ(t′)

∫ αcst′

0
dx J0

(

k⊥√
α

√

α2c2
st

′2 − x2

)

cos (kx′x) .

Using (F.5) we then find the Green’s function for slow moving spacecraft:

Grf
R(t′, k′) = −θ

(

t′
) ieiϕ

2cs

√

k2
x′ + k2

⊥/α

(

e
iαcst′

q

k2

x′
+k2

⊥
/α − e

−iαcst′
q

k2

x′
+k2

⊥
/α
)

= θ
(

t′
) 1

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2

1 − v2

)−1/2
(

eiω+t′ − eiω−t′
)

. (F.17)

In the case of rapid spacecraft, v2c2
s > 1 (α < 0), one can verify that α2c2

st
′2 > x2

∗ for

any t′. Thus (F.16) along with (F.15) can be rewritten as:

Grf
R(t′, k′) =

eiϕ

2cs

∫ +∞

|αcst′|
dx J0

(

k⊥
√

|α|

√

α2c2
st

′2 − x2

)

(cos (kx′x) + i sin (kx′x)) . (F.18)

Using (F.2) and (F.4) for k2
⊥ > |α| k2

x′ and (F.1) and (F.3) for k2
⊥ < |α| k2

x′ we obtain in

both cases:

Grf
R(t′, k′) =

eiϕ

2cs

exp

(

− |αcst
′|
√

k2
⊥ |α|−1 − k2

x′

)

√

k2
⊥ |α|−1 − k2

x′

. (F.19)

The last expression can be written as

Grf
R(t′, k′) = − 1

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2

1 − v2

)−1/2
(

θ
(

t′
)

eiω+t′ + θ
(

−t′
)

eiω−t′
)

. (F.20)

Thus the modes propagating in with

k2
⊥ > k2

x′ |α| = k2
x′

(

1 − v2

c2
sv

2 − 1

)

(F.21)

are exponentially suppressed. The singular directions k2
⊥ = k2

x′ |α| are unphysical because

they have measure zero in the integral. This directions correspond to the sufficient but

integrable singularities in the Green function.

If the Green’s function is calculated directly from the eq. (5.2) by means of standard

approach then one can find, that the solution is:

Gsc
R(t′, k′) = θ

(

t′
) 1

2ics

(

k2
x′ + k2

⊥

1 − c2
sv

2

1 − v2

)−1/2
(

eiω+t′ − eiω−t′
)

, (F.22)

which coincides with the Green’s function (F.17) we calculated by applying the Lorentz

transformation to the rest Green’s function in the case of slow motion. Note, however,
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that the results differs for the case of fast moving spacecraft - compare (F.22) and (F.20).

The function Gsc
R (t′, k′) from (F.22) contains exponentially growing modes for sufficiently

high k⊥, while correct way of calculation gave us a sensible result (F.20) - it contains

only exponentially suppressed modes. This makes sense because the late time solution

approaches the free wave which do not contain these high k⊥.
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